What impact do assumptions about missing data have on conclusions? A practical sensitivity analysis for a cancer survival registry

نویسندگان

  • M Smuk
  • J R Carpenter
  • T P Morris
چکیده

BACKGROUND Within epidemiological and clinical research, missing data are a common issue and often over looked in publications. When the issue of missing observations is addressed it is usually assumed that the missing data are 'missing at random' (MAR). This assumption should be checked for plausibility, however it is untestable, thus inferences should be assessed for robustness to departures from missing at random. METHODS We highlight the method of pattern mixture sensitivity analysis after multiple imputation using colorectal cancer data as an example. We focus on the Dukes' stage variable which has the highest proportion of missing observations. First, we find the probability of being in each Dukes' stage given the MAR imputed dataset. We use these probabilities in a questionnaire to elicit prior beliefs from experts on what they believe the probability would be in the missing data. The questionnaire responses are then used in a Dirichlet draw to create a Bayesian 'missing not at random' (MNAR) prior to impute the missing observations. The model of interest is applied and inferences are compared to those from the MAR imputed data. RESULTS The inferences were largely insensitive to departure from MAR. Inferences under MNAR suggested a smaller association between Dukes' stage and death, though the association remained positive and with similarly low p values. CONCLUSIONS We conclude by discussing the positives and negatives of our method and highlight the importance of making people aware of the need to test the MAR assumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: What impact do assumptions about missing data have on conclusions? a practical sensitivity analysis for a cancer survival registry

Erratum After the publication of the original article [1], it came to the author’s attention that an error affecting Figures 2 and 3, and the Additional files, has occurred. During the author proofing stage, an instruction was made to move Figs. 2 and 3 to the Additional files. The instruction was misinterpreted by the Production team, resulting in the files being retained as Figs. 2 and 3, and...

متن کامل

پیش‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎بینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی

  Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...

متن کامل

Variance estimation in reference based sensitivity analysis for longitudinal trials with protocol deviation

The statistical analysis of longitudinal randomised clinical trials is frequently complicated by the occurrence of protocol deviations, which result in incomplete data sets for analysis. Analysis and inference then rest on inherently untestable assumptions about the distribution of the unobserved data. It is therefore important to perform sensitivity analysis to explore the robustness of conclu...

متن کامل

Spatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients

In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...

متن کامل

Practical Considerations in the Application of Statistical Methods for Treatment Switching.

What if full data collection is not practical? This may happen if the decision to adjust for switch is post-hoc, or (for IPCW covariates) if post-progression survival is very long. Review of NICE TAs with switch adjustment Search methods and further details of results are available on request. 16 analysis groups [ITT analyses with associated switch adjusted analysis hazard ratios (HRs) and conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017